Knowing the scientists

As a biologist, one of the scientists that drives me going in my field is no other person than Gregor Mendel. Despite the fact that he was a monk, he still gave in to learning and research. Through the little experiment he carried out on plants in the monastery, the world today is exposed to the knowledge of heredity. From this I learnt that no effort is ever wasted as he was later crowned the father of heredity. Though he never lived to received the crown by hand but his name is mentioned from generation to generation. That’s why my I can not talk about life science without writing about this genius.

So Who is he?

Gregor Mendel was an Austrian monk who discovered the basic principles of heredity through experiments in his garden. Mendel’s observations became the foundation of modern genetics and the study of heredity, and he is widely considered a pioneer in the field of genetics.

Synopsis

Gregor Mendel, known as the “father of modern genetics,” was born in Austria in 1822. A monk, Mendel discovered the basic principles of heredity through experiments in his monastery’s garden. His experiments showed that the inheritance of certain traits in pea plants follows particular patterns, subsequently becoming the foundation of modern genetics and leading to the study of heredity.

What was his Early Life like?

Gregor Johann Mendel was born Johann Mendel on July 22, 1822, to Anton and Rosine Mendel, on his family’s farm, in what was then Heinzendorf, Austria. He spent his early youth in that rural setting, until age 11, when a local schoolmaster who was impressed with his aptitude for learning recommended that he be sent to secondary school in Troppau to continue his education. The move was a financial strain on his family, and often a difficult experience for Mendel, but he excelled in his studies, and in 1840, he graduated from the school with honors.

Following his graduation, Mendel enrolled in a two-year program at the Philosophical Institute of the University of Olmütz. There, he again distinguished himself academically, particularly in the subjects of physics and math, and tutored in his spare time to make ends meet. Despite suffering from deep bouts of depression that, more than once, caused him to temporarily abandon his studies, Mendel graduated from the program in 1843.

That same year, against the wishes of his father, who expected him to take over the family farm, Mendel began studying to be a monk: He joined the Augustinian order at the St. Thomas Monastery in Brno, and was given the name Gregor. At that time, the monastery was a cultural center for the region, and Mendel was immediately exposed to the research and teaching of its members, and also gained access to the monastery’s extensive library and experimental facilities.

In 1849, when his work in the community in Brno exhausted him to the point of illness, Mendel was sent to fill a temporary teaching position in Znaim. However, he failed a teaching-certification exam the following year, and in 1851, he was sent to the University of Vienna, at the monastery’s expense, to continue his studies in the sciences. While there, Mendel studied mathematics and physics under Christian Doppler, after whom the Doppler effect of wave frequency is named; he studied botany under Franz Unger, who had begun using a microscope in his studies, and who was a proponent of a pre-Darwinian version of evolutionary theory.

In 1853, upon completing his studies at the University of Vienna, Mendel returned to the monastery in Brno and was given a teaching position at a secondary school, where he would stay for more than a decade. It was during this time that he began the experiments for which he is best known.

What were his Experiments and Theories?

Around 1854, Mendel began to research the transmission of hereditary traits in plant hybrids. At the time of Mendel’s studies, it was a generally accepted fact that the hereditary traits of the offspring of any species were merely the diluted blending of whatever traits were present in the “parents.” It was also commonly accepted that, over generations, a hybrid would revert to its original form, the implication of which suggested that a hybrid could not create new forms. However, the results of such studies were often skewed by the relatively short period of time during which the experiments were conducted, whereas Mendel’s research continued over as many as eight years (between 1856 and 1863), and involved tens of thousands of individual plants.

Mendel chose to use peas for his experiments due to their many distinct varieties, and because offspring could be quickly and easily produced.

Mendels' seven traits

The seven traits of pea plants that Mendel chose to study: seed wrinkles; seed color; seed-coat color, which leads to flower color; pod shape; pod color; flower location; and plant height. Image by Mariana Ruiz

He cross-fertilized pea plants that had clearly opposite characteristics—tall with short, smooth with wrinkled, those containing green seeds with those containing yellow seeds, etc.—and, after analyzing his results, reached two of his most important conclusions: the Law of Segregation, which established that there are dominant and recessive traits passed on randomly from parents to offspring (and provided an alternative to blending inheritance, the dominant theory of the time), and the Law of Independent Assortment, which established that traits were passed on independently of other traits from parent to offspring. He also proposed that this heredity followed basic statistical laws. Though Mendel’s experiments had been conducted with pea plants, he put forth the theory that all living things had such traits.

In 1865, Mendel delivered two lectures on his findings to the Natural Science Society in Brno, who published the results of his studies in their journal the following year, under the titleExperiments on Plant Hybrids. Mendel did little to promote his work, however, and the few references to his work from that time period indicated that much of it had been misunderstood. It was generally thought that Mendel had shown only what was already commonly known at the time—that hybrids eventually revert to their original form. The importance of variability and its evolutionary implications were largely overlooked. Furthermore, Mendel’s findings were not viewed as being generally applicable, even by Mendel himself, who surmised that they only applied to certain species or types of traits. Of course, his system eventually proved to be of general application and is one of the foundational principles of biology.

Law of Independent Assortment

Mendel’s law of independent assortment states that genes do not influence each other with regard to the sorting of alleles into gametes: every possible combination of alleles for every gene is equally likely to occur. The independent assortment of genes can be illustrated by the dihybrid cross: a cross between two true-breeding parents that express different traits for two characteristics. Consider the characteristics of seed color and seed texture for two pea plants: one that has green, wrinkled seeds (yyrr) and another that has yellow, round seeds (YYRR).

Because each parent is homozygous, the law of segregation indicates that the gametes for the green/wrinkled plant all are yr, while the gametes for the yellow/round plant are all YR. Therefore, the F1 generation of offspring all are YyRr.

For the F2 generation, the law of segregation requires that each gamete receive either an R allele or an r allele along with either a Y allele or a y allele. The law of independent assortment states that a gamete into which an r allele sorted would be equally likely to contain either a Y allele or a y allele. Thus, there are four equally likely gametes that can be formed when the YyRr heterozygote is self-crossed as follows:

YR, Yr, yR, and yr.

Arranging these gametes along the top and left of a 4 × 4 Punnett square gives us 16 equally likely genotypic combinations. From these genotypes, we infer a phenotypic ratio of 9 round/yellow:3 round/green:3 wrinkled/yellow:1 wrinkled/green. These are the offspring ratios we would expect, assuming we performed the crosses with a large enough sample size.

image
: Independent assortment of 2 genes:

This dihybrid cross of pea plants involves the genes for seed color and texture.

Because of independent assortment and dominance, the 9:3:3:1 dihybrid phenotypic ratio can be collapsed into two 3:1 ratios, characteristic of any monohybrid cross that follows a dominant and recessive pattern. Ignoring seed color and considering only seed texture in the above dihybrid cross, we would expect that three-quarters of the F2 generation offspring would be round and one-quarter would be wrinkled. Similarly, isolating only seed color, we would assume that three-quarters of the F2offspring would be yellow and one-quarter would be green. The sorting of alleles for texture and color are independent events, so we can apply the product rule. Therefore, the proportion of round and yellow F2 offspring is expected to be (3/4) × (3/4) = 9/16, and the proportion of wrinkled and green offspring is expected to be (1/4) × (1/4) = 1/16. These proportions are identical to those obtained using a Punnett square. Round/green and wrinkled/yellow offspring can also be calculated using the product rule as each of these genotypes includes one dominant and one recessive phenotype. Therefore, the proportion of each is calculated as (3/4) × (1/4) = 3/16.

Forked-Line Method

When more than two genes are being considered, the Punnett-square method becomes unwieldy. For instance, examining a cross involving four genes would require a 16 × 16 grid containing 256 boxes. It would be extremely cumbersome to manually enter each genotype. For more complex crosses, the forked-line and probability methods are preferred.

To prepare a forked-line diagram for a cross between F1heterozygotes resulting from a cross between AABBCC and aabbcc parents, we first create rows equal to the number of genes being considered and then segregate the alleles in each row on forked lines according to the probabilities for individual monohybrid crosses. We then multiply the values along each forked path to obtain the F2offspring probabilities. Note that this process is a diagrammatic version of the product rule. The values along each forked pathway can be multiplied because each gene assorts independently. For a trihybrid cross, the F2phenotypic ratio is 27:9:9:9:3:3:3:1.

image
: Independent assortment of 3 genes: The forked-line method can be used to analyze a trihybrid cross.

Here, the probability for color in the F2 generation occupies the top row (3 yellow:1 green). The probability for shape occupies the second row (3 round:1 wrinked), and the probability for height occupies the third row (3 tall:1 dwarf). The probability for each possible combination of traits is calculated by multiplying the probability for each individual trait. Thus, the probability of F2 offspring having yellow, round, and tall traits is 3 × 3 × 3, or 27.

Probability Method

While the forked-line method is a diagrammatic approach to keeping track of probabilities in a cross, the probability method gives the proportions of offspring expected to exhibit each phenotype (or genotype) without the added visual assistance.

To fully demonstrate the power of the probability method, however, we can consider specific genetic calculations. For instance, for a tetrahybrid cross between individuals that are heterozygotes for all four genes, and in which all four genes are sorting independently in a dominant and recessive pattern, what proportion of the offspring will be expected to be homozygous recessive for all four alleles? Rather than writing out every possible genotype, we can use the probability method. We know that for each gene the fraction of homozygous recessive offspring will be 1/4. Therefore, multiplying this fraction for each of the four genes, (1/4) × (1/4) × (1/4) × (1/4), we determine that 1/256 of the offspring will be quadruply homozygous recessive.

Further Explanation on peas Peas Trait Experiment

Mendel studied inheritance in peas (Pisum sativum). He chose peas because they had been used for similar studies, are easy to grow and can be sown each year. Pea flowers contain both male and female parts, called stamen and stigma, and usually self-pollinate. Self-pollination happens before the flowers open, so progeny are produced from a single plant.

Peas can also be cross-pollinated by hand, simply by opening the flower buds to remove their pollen-producing stamen (and prevent self-pollination) and dusting pollen from one plant onto the stigma of another.

Cross-pollination of pea plants

To cross-pollinate peas, pollen from the stamen of 1 plant is transferred to the stigma of another. Before the transfer, the anthers must be removed from the recipient plant to prevent self-pollination.

Traits in pea plants

Mendel followed the inheritance of 7 traits in pea plants, and eachtrait had 2 forms. He identified pure-breeding pea plants that consistently showed 1 form of a trait after generations of self-pollination.

Mendel’s experiment on Pea traits

Mendel cross-bred peas with 7 pairs of pure-bred traits. First-generation (F1) progeny only showed the dominant traits, but recessive traits reappeared in the self-pollinated second-generation (F2) plants in a 3:1 ratio of dominant to recessive traits.

Mendel then crossed these pure-breeding lines of plants and recorded the traits of the hybrid progeny. He found that all of the first-generation (F1) hybrids looked like 1 of the parent plants. For example, all the progeny of a purple and white flower cross were purple (not pink, as blending would have predicted). However, when he allowed the hybrid plants to self-pollinate, the hidden traits would reappear in the second-generation (F2) hybrid plants.

Dominant and recessive traits

Mendel described each of the trait variants as dominant or recessive dominant traits, like purple flower colour, appeared in the F1 hybrids, whereas recessive traits, like white flower colour, did not.

Mendel did thousands of cross-breeding experiments. His key finding was that there were 3 times as many dominant as recessive traits in F2 pea plants (3:1 ratio).

Inheriting traits in peas

Mendel crossed pure lines of pea plants. Dominant traits, like purple flower colour, appeared in the first-generation hybrids (F1), whereas recessive traits, like white flower colour, were masked. However, recessive traits reappeared in second-generation (F2) pea plants in a ratio of 3:1 (dominant to recessive).

Traits are inherited independently

Mendel also experimented to see what would happen if plants with 2 or more pure-bred traits were cross-bred. He found that each trait was inherited independently of the other and produced its own 3:1 ratio. This is the principle of independent assortment.

The next generations

Mendel didn’t stop there – he continued to allow the peas to self-pollinate over several years whilst meticulously recording the characteristics of the progeny. He may have grown as many as 30,000 pea plants over 7 years.

Later Life and Legacy

In 1868, Mendel was elected abbot of the school where he had been teaching for the previous 14 years, and both his resulting administrative duties and his gradually failing eyesight kept him from continuing any extensive scientific work. He traveled little during this time, and was further isolated from his contemporaries as the result of his public opposition to an 1874 taxation law that increased the tax on the monasteries to cover Church expenses.

Gregor Mendel died on January 6, 1884, at the age of 61. He was laid to rest in the monastery’s burial plot and his funeral was well attended. His work, however, was still largely unknown.

It was not until decades later, when Mendel’s research informed the work of several noted geneticists, botanists and biologists conducting research on heredity, that its significance was more fully appreciated, and his studies began to be referred to as Mendel’s Laws. Hugo de Vries, Carl Correns and Erich von Tschermak-Seysenegg each independently duplicated Mendel’s experiments and results in 1900, finding out after the fact, allegedly, that both the data and the general theory had been published in 1866 by Mendel. Questions arose about the validity of the claims that the trio of botanists were not aware of Mendel’s previous results, but they soon did credit Mendel with priority. Even then, however, his work was often marginalized by Darwinians, who claimed that his findings were irrelevant to a theory of evolution. As genetic theory continued to develop, the relevance of Mendel’s work fell in and out of favor, but his research and theories are considered fundamental to any understanding of the field, and he is thus considered the “father of modern genetics.”

Stay connected to myschoollibrary for more educational contents.